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SUMMARY 

The use of an implicit numerical scheme, analogous to MacCormack's', for the supersonic laminar 
two-dimensional compression corner flow problem using unsteady Navier-Stokes equations is demonstra- 
ted. The technique entails a reduction of about 70 per cent in the computation time for a Courant number 
of 5, but it is characterized by an increase of approximately 20 per cent in computer memory requirement. 

KEY WORDS Navier-Stokes Equations Compression Corner Flows Implicit Numerical Scheme 
Co-ordinate Transformation 

INTRODUCTION 

Explicit numerical  scheme^^,^ have been extensively used in the literature for the solution of 
two-dimensional unsteady Navier-Stokes equations in the context of compression corner flow 
problems. A major disadvantage of this technique is the long computation time, owing to the 
stringent limitation on the time step size. In the present paper, an implicit numerical method, 
analogous to that of Ma~Cormack,' ,~ has been successfully applied to solve the Navier-Stokes 
equations for the compression corner flow, transformed into a rectangular computational domain. 
The features of the flow field under investigation are depicted in Figure 1. 

MATHEMATICAL FORMULATION 

The unsteady two-dimensional Navier-Stokes equations may be written with respect to Cartesian 
co-ordinates in conservation form as 

aU 8F 8G -+ - +- = 0, 
at ax ay 

where 
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Figure I .  Schematic diagram of a supersonic flow field over a compression corner: (1) resultant shock; (2) leading edge 
shock; (3) induced shock; (4) separation compression fan; (5) reattachment compression fan; (6 )  boundary layer edge; (7) 
leading edge; (8) separation point; (9) reattachment point; (10) dividing streamline; (1 1) recirculating streamline; (12) neck 

region 

F =  I p u v + z x y  
(e  + ox)u + z y x v  - 

(e  + a,)v + zXyu - 

av 
a,=p-A -+- -2p--, (:I :;) ay 

the symbols having the same meanings as in Reference 1. Defining a such that a = 0 upstream 
of the corner, and a = 8 downstream, the transformation 4 = x and q = y - (x - RL) tan a, where 
RL is the distance from the leading edge to the corner, results in a computational domain which 
can be discretized into rectangular grids. Equation (l), when transformed into the new 
computational space, assumes the form 

aU' 8F' aG' 
~ +-+-= 0, 
at  a t  aq 

where 

U ' = U ,  F ' = F ,  G ' = G - F t a n a .  (3) 
Differentiating equation (2) partially with respect to t ,  we obtain 

-(-) a au = -$( e) -$( e), 
at at (4) 
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s,= 

where A and B are, respectively, the Jacobians of F' and G' w.r.t. U. Implicitly approximating 
equation (4) and following Reference 1, we obtain 

I .  1 1 

-uc+ag c-ug -vg 

_ -  0 - 0  

where 

I I p  P 

aun 
at at 

At and AU;j=-At. 
au*+ 1 6UYj+:.+' = - 

Now an implicit predictor-corrector scheme may be defined for the numerical integration of 
the transformed equations as follows: 

Predictor 

Corrector 

__ 
(7) n + l  - 1 

where D + and D - represent, respectively, forward and backward spatial difference operators, 
and dots indicate that the derivatives operate on all the factors to the right. 

The matrices IAl and IBI have positive eigenvalues and are related to the Jacobians A 
and B. Let S, and S, and their inverses denote the matrices that diagonalize A and B, with 
p = i = k = 0. Then, with perfect gas relations, A and B may be arranged as 

and 

where 
B = S,- A&,, 

-uc+ag c-ug -vg p s, = 
1 

P P 
0 - 0  

V _ -  
(9) 

L u c + a p  -c-ug -vg 
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1 -- up 
C2 C2 

~ 0 - ?x 

Pa2 

P,(a&) P 1 ( $ c - u P )  P 1 ( $ c - u P )  P I P  

P, (  aP + 3) - Pl(  $ c  + U P )  - P l (  $c + U P )  P I P  
- 

and A, and A, are diagonal matrices with the eigenvalues (u, u + c, u, u - c) and ( a l ,  a l ,  a, + 
ca2,a1 - ca,), respectively, as elements. The matrices IAl and IBI are defined by 

IAl =SFIDAS, and IBI =S;'D,S,, (12) 
where D, and D, are, again, diagonal matrices with elements (A,,, A,,, A,,, A,&) and (A,,, & ,  AB3, A,), 
respectively. Here, 

with similar expressions for the other elements of the matrices D, and D, with I u I and I a, I replaced, 
respectively, by the absolute value of the corresponding eigenvalue, and 

v=max pL,A+2p,- . i 3 
It is easy to observe from equation (13) that for regions of the flow in which At satisfies the explicit 
stability criterion, all A, and A, vanish, and consequently the difference equations (7) just reduce to 
those of the explicit method. 

COMPUTER PROGRAM AND RESULTS 

A computer program was developed in FORTRAN for carrying out two-dimensional compression 
corner flow calculations and was made operational on the CDC CYBER 170/730 computer of 
Vikram Sarabhai Space Centre, Trivandrum. Thirty-two mesh points were used in the 5-direction 
with the ramp at the 18th mesh point and the leading edge at the 4th. In the q-direction, a 
two-mesh system of a fine stretched mesh (of 18 points) near the wall and a coarse uniform mesh 
(of 10 points) away from the wall was employed. 

The results obtained through the program for the following two specific cases for which 
literature values are readily available are now considered: 

(i) M, = 3.0, Re, = 1.68 x lo4, 8 =  lo", 
(ii) M ,  = 4.0, Re, = 6.8 x lo4, 0 = 10". 
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Figure 2. Computational domain after transformation: (1) leading edge; (2) compression corner; (3) uniform coarse mesh; 
(4) stretched fine mesh 

Free-stream conditions were assumed (Figure 2) at the upstream and top mesh boundaries, while 
no slip condition at  the wall and zero-order extrapolation at the downstream boundary were 
applied. 

The data processing rate was about 3.4 x lop3 s per grid point including prediction and 
correction, i.e. on an average, about 60 per cent more than that for the explicit scheme. Thus, 
when a CFL (Courant-Friedrichs-Lewy) number of 5 was used, the implicit scheme took about 
one-third of the time for the explicit method, yielding a speed-up factor of approximately 3. 
CFL numbers upto about 15 could be used in the specific examples without loss of accuracy. 
About 250 iterations were required to obtain convergence when the difference in the flow 
parameter values between two successive iterations became less than about 0.1 per cent, and 
this took about 1 1  min on the CDC computer. 

It is also observed that for the implicit method, the memory requirement is marginally more, 
owing to the fact that the Aus of all elements of the state vector for all mesh points need to be 
stored. Thus, for the 32 x 28 mesh system, although the explicit method requires about 2 x lo4 
60-bit words of memory, an additional 4 x lo3 words will have to be available for the implicit 
case. In other words, the increase in memory requirement for the implicit scheme is of the order 
of 20 per cent. 
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Figure 3. Comparison of wall pressure and skin friction ( M ,  = 3.0, Re,  = 1.68 x lo4, 0 = lo"): results from implicit 
method;---Carter's results;----MacCormack's results. 1 indicates inviscid results 
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3.0 

2.6 

Figure 3 presents the surface pressure distribution and skin friction as obtained through the 
program for case (i). The corresponding computed values of Carter3 and MacCormack2 are 
also shown in the Figure and the comparison is quite good. Figure4 describes the surface 
pressure distribution and skin friction for the Mach 4 flow (case (ii)), which is again in reasonable 
conformity with the experimental surface pressure values due to Lewis6 as also Carter’s computed 
values3 exhibited in the same figure. 

Figure 5 presents a plot of the computation time to reach steady state against the Courant 
number used in the implicit numerical scheme for case (i), giving an idea of the speed-up factor 
as compared to the explicit numerical method. 
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Figure 4. Comparison of wall pressure and skin friction ( M ,  = 4.0, Re,  = 6.8 x lo4, 0 = lW):-results from implicit 
method; 0 0 0 experimental results; - - - results from Carter, 1 indicates inviscid results 
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Figure 5 .  Computation time to reach steady state vs. Courant number used in the implicit scheme ( M ,  = 3.0, Re, = 
1.68 x lo4, 0 = 10, 32 x 28 mesh) 
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